Exercise 66

Find the nth derivative of each function by calculating the first few derivatives and observing the pattern that occurs.
(a) $f(x)=x^{n}$
(b) $f(x)=1 / x$

Solution

Part (a)
Use the power rule to differentiate the function.

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1} \\
f^{\prime \prime}(x) & =n(n-1) x^{n-2} \\
f^{\prime \prime \prime}(x) & =n(n-1)(n-2) x^{n-3}
\end{aligned}
$$

Recognizing the pattern, the nth derivative is

$$
f^{(n)}(x)=n!x^{n-n}=n!.
$$

Part (b)
Rewrite the given function.

$$
f(x)=x^{-1}
$$

Use the power rule to differentiate the function.

$$
\begin{aligned}
f^{\prime}(x) & =-x^{-2} \\
f^{\prime \prime}(x) & =-(-2) x^{-3} \\
f^{\prime \prime \prime}(x) & =-(-2)(-3) x^{-4}
\end{aligned}
$$

Recognizing the pattern, the nth derivative is

$$
f^{(n)}(x)=(-1)^{n} n!x^{-1-n}
$$

